

D36.141

 Service Development Kit (release 1)

Work package: 3.6

Version number: Version 0.3

Dissemination level: PU

Date: 18/12/2013

7th RTD Framework Programme
Directorate General for Communications Networks, Content & Technology
Cooperative Systems for energy efficient and sustainable mobility (FP7-ICT-2011-6.7)
Contract Type: Collaborative project
Grant agreement no.: 318485

 Service Development Kit (release 1)

 18/12/2013

Page 2 of 22 Version 0.3

Version Control

Version history

Version Date Main author Summary of changes

0.1 04/12/2013 Henning Mosebach Initial structure and content

0.2 10/12/2013 Tobias Schlauch Description of REST API

0.3 12/12/2013 Tobias Schlauch, Henning

Mosebach

Consolidation of document

0.4 19/12/2013 Henning Mosebach Integration of reviewers feedback

 Name Date

Prepared Henning Mosebach 13/12/2013

Reviewed Igor Passchier 17/12/2013

Authorised Dorota Boruc 23/12/2013

Circulation

Recipient Date of submission

European Commission

Project partners

Authors

Henning Mosebach, Tobias Schlauch, Jörg Belz, Dirk Beckmann

 Service Development Kit (release 1)

 18/12/2013

Page 3 of 22 Version 0.3

Table of contents

Version Control ... 2

Table of contents ... 3

Abbreviations and definitions ... 4

Executive Summary .. 5

1. Introduction .. 6

1.1. Document Purpose and Scope ... 6

1.2. Intended Audience .. 6

1.3. Boundaries and requirements of the SDK .. 6

2. Developer Tools ... 8

2.1. SDK tool candidates ... 8

2.2. SDK tools for release 1 ... 9

2.2.1. Organisational support ..9

2.2.2. Tutorials for service providers ..9

2.2.3. Tutorials for migrating existing services ... 10

2.2.4. Tools for migrating existing services .. 10

2.2.5. Selection of plug-ins for Eclipse environment .. 10

2.2.5.1. Plug-in for version control .. 10

2.2.5.2. JIRA for issue tracker .. 10

2.2.5.3. Editor for USDL service description ... 10

2.2.5.4. Plug-ins for debugging REST services .. 11

2.2.5.5. Migration tools for USDL service description ... 12

2.2.6. Supporting Development with MOBiAGENT .. 12

2.2.7. ZIP Archive with complete bundle .. 12

2.3. REST API ..12

2.3.1. Recommendations for RESTful Web Service Design 12

2.3.2. REST API Specification Template ... 18

2.4. Tutorials ...19

2.4.1. Example Service ... 19

3. Summary ... 22

 Service Development Kit (release 1)

 18/12/2013

Page 4 of 22 Version 0.3

Abbreviations and definitions

Abbreviation Definition

API Application Programming Interface

JSON Java Script Object Notification

OS Operating System

REST Representational State Transfer

SDK Service Development KIT

UI User Interface

 UML Unified Modelling Language

USDL Unified Service Description Language

URL Uniform Resource Locator

WS Web Service

WSDL Web Service Description Language

 Service Development Kit (release 1)

 18/12/2013

Page 5 of 22 Version 0.3

Executive Summary

This document represents the basic components of the MOBiNET Service Development KIT. In general

the SDK is not a central runtime component to be hosted by the MOBiCENTRE server but it is a bundle

of developing tools that helps service developers doing their job as comfortable and reliable as possible.

This deliverable gives the list of tools and supporting documents for the service developers. The tools

are classified towards their use in release 1, 2 and 3. It furthermore provides recommendations and best

practices for RESTful Web Service design.

 Service Development Kit (release 1)

 18/12/2013

Page 6 of 22 Version 0.3

1. Introduction

1.1. Document Purpose and Scope

The MOBiNET platform consisting of MOBiCENTRE and MOBiAGENTis not only a central server

hosting the applications. There is an additional need to enable a bridge between the MOBiNET platform

and the user orientated service provider. Tools and guidelines are required to enable a developer that to

develop services and apps that make use of the platform. These tools have to be identified, developed

and adapted to make sure that the tools fit in the technical boundaries and functional requirements. The

sets of tools will form the SDK, and enables service providers to develop and test their services in an

aligned and comfortable way.

The activities regarding the service developer KIT have to be regarded in-line with the Service

Developers Facilities (compare to D36.151). The Service developer facilities are providing working

environments that help service providers to build, test and deploy services.

The purpose of this document is to give an overview over the Service Development KIT components and

their boundaries.

1.2. Intended Audience

The targeted audience of this deliverable are the MOBiNET service developers. It is expected that the

reader is already familiar with the MOBiNET platform (see D41.1) and has general technical expertise

concerning software development based on a service platform. The future releases 2 and 3 will be more

and more addressed to service developers outside of the MOBiNET project.

1.3. Boundaries and requirements of the SDK

Focussing on the need of a service provider a bundle of supporting tools is required to ease the

development and deployment procedure of a new created service. While the MOBiNET components

themselves and the hosting platform need a high level of expertise to be treated the service providers

should have a package of means of support in order to develop their service in a comfortable and ”non-

expert” way. In other words the complexity of a service is moved to the platform.

This package is developed within the SDK and will contain tutorials, tools that are required to use

MOBiNET as service developing environment, a reference API and procedure description how to make

use of the MOBiNET platform. The SDK also contains plug-ins for existing tools and example services

that demonstrates the MOBINET functionality.

On a generic level these developer tools are

 An integrated developing environment containing:

o A source code editor

 Service Development Kit (release 1)

 18/12/2013

Page 7 of 22 Version 0.3

o Debugging opportunities for different programming languages e.g. Java) and for the

REST API

o A compiler adapted to the platform runtime environment

 A dummy service that serves as an example for service developers how to create their

applications

 Guidelines and tutorials and/or references to existing accompanying documents

 Migration tools that allows to migrate existing services on the MOBiNET platform

 Definitions for data translation and semantics

During the study of this deliverable it is recommended to keep the division between the MOBiAGENT

and the MOBiCENTRE in mind as it is represented in D31.2, fig.6.

 Service Development Kit (release 1)

 18/12/2013

Page 8 of 22 Version 0.3

2. Developer Tools

2.1. SDK tool candidates

To achieve the goal described in chapter 1 several tools concerning development support, testing

environments and supporting software are required. The list of proposed components is given in Table 1.

The objective of this deliverable is to select a realistic number of supporting tools for the first release that

are mandatory to enable the developers creating their services.

Table 1: Tool candidates for supporting service developers and their classification (target releases)

Topic Short description Example or source (link)
Target

release

Organisational

support

Revision control

system (SVN),

Tracking procedure for

developer requests

- Version control support (svn for

Eclipse)

- Jira-project dedicated to service

providers

1

Tutorials for

service providers

A complete description

on an aligned level of

details that enables

service developers to

develop a service

Containing: How to…

- Define a service

- Use the MOBiCENTRE and

MOBiAGENT functionalities

- Use the developing environment

- Implement a service

- Maintain a service

2,3

Tools for migrating

existing services

A complete description

on an aligned level of

details that enables a

service developer to

migrate a service

Containing: How to…

- Prepare the service before migration

- Migrate the service

2,3

Selection of plug-

ins for developing

environment

Eclipse

Eclipse plug-ins

- Editor

- Debugger for REST services

- Version control plug-ins

- Jira plug-in

1,2,3

 Service Development Kit (release 1)

 18/12/2013

Page 9 of 22 Version 0.3

Supporting

development with

MOBiAGENT

Tools and documents

for MOBiAGENT

development

- Manuals

- Tutorials

- Examples on how to develop and

deploy services in the MOBiAGENT

1,2,3

ZIP-Archive with

complete bundle

Service developers

bundle (for both LINUX

and Windows)

Contains all relevant tools for a service

developer

2,3

Editor for USDL

service description

Editor for USDL

service description

MOBiCENTRE services are expected to be

described in USDL

1

Migration tools for

USDL service

description

Migration tools for

USDL service

description

Services to be integrated in MOBiCENTRE

needs supported by changes of the service

description

2,3

REST API

recommendations

Specification of

RESTful Web service

API

Recommendations and best practices for

RESTful Web Service design.

1

Example services

including tutorials

Dummy service as

example for service

developers

“Greeting service” as guiding example

1

2.2. SDK tools for release 1

2.2.1. Organisational support

A software repository system will be set up and hosted by DLR in order to support the developers with a

version control system to provide a central place towards developers.

For collecting and tracking issues specifically from the service developers, another project in our

MOBiNET JIRA instance will be set up. Incoming request are collectively handled by the partners.

2.2.2. Tutorials for service providers

To be updated in release 2.

 Service Development Kit (release 1)

 18/12/2013

Page 10 of 22 Version 0.3

2.2.3. Tutorials for migrating existing services

To be updated in release 2.

2.2.4. Tools for migrating existing services

To be updated in release 2.

2.2.5. Selection of plug-ins for Eclipse environment

A recent Eclipse distribution bundled with plug-ins will be available via a Zip-archive. The target

operating system for the developers is both Windows 7 and generic Linux.

As base distribution, we use the current Eclipse Kepler release (edition: Java EE Developers)

(http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr1)

It contains the components explained in the following subchapters.

2.2.5.1. Plug-in for version control

For Subversion access, we provide the Subversive plug-in:

http://www.eclipse.org/subversive/

In addition, if developers want to use another version control systems, we also provide the EGit plug-in:

http://www.eclipse.org/egit/

2.2.5.2. JIRA for issue tracker

The Jira tool that is already established in the working methodology (described in D31.2) will be set up

for issues concerning the developing of services. The working procedure is described more detailed in

MOBiNET D21.1 and can also be found using the following link:

https://confluence.atlassian.com/display/IDEPLUGIN/Working+with+JIRA+Issues+in+Eclipse

2.2.5.3. Editor for USDL service description

An editor for editing services descriptions in USDL will be added to the Eclipse distribution as HTML5

standalone app. An example of the editor is shown in Figure 1.

http://www.eclipse.org/subversive/
http://www.eclipse.org/egit/
https://confluence.atlassian.com/display/IDEPLUGIN/Working+with+JIRA+Issues+in+Eclipse

 Service Development Kit (release 1)

 18/12/2013

Page 11 of 22 Version 0.3

 Figure 1: Example of USDL-Editor (here: http://www.linked-usdl.org/node/229)

2.2.5.4. Plug-ins for debugging REST services

The Eclipse HTTP Client will be used for debugging and testing the REST services. The HTTP Client

(HTTP4e) is an Eclipse plug-in for making HTTP and RESTful calls. Build with user experience in mind,

it simplifies the developer/QA job of testing Web Services, REST, JSON and HTTP. It is a useful tool for

your daily job of HTTP header tampering and hacking. The features of the client are

 Making/Replaying an HTTP call directly from Eclipse IDE
 Visual Editors for HTTP headers, parameters and body
 Tabbed browsing (allowing replaying different RESTful, HTTP calls on separate tabs)
 History support (persisting your valuable REST calls)
 One-click HTTP code generation to Java, PHP, C#, Flex/ActionScript, Cocoa/Objective-C, Ruby,

Python and Visual Basic
 One-click JMeter script generation
 Import and export HTTP4e replay script
 Export HTTP sessions as HTML report
 Import raw HTTP packets and Firefox’s Live HTTP headers
 Aesthetic UI, Code assist, Headers auto-suggest, Syntax coloring
 “Raw”, “Pretty”, “Hex”, “Browser” and “JSON” views
 Proxy Configuration
 BASIC and DIGEST Authentication
 SSL/HTTPS support
 Unicode UTF8 support
 HTTP tampering
 Tab renaming
 Available on Windows, MacOS X, Linux, Solaris

More features and explanations can be found using: http://www.nextinterfaces.com/

http://www.linked-usdl.org/node/229
http://www.nextinterfaces.com/

 Service Development Kit (release 1)

 18/12/2013

Page 12 of 22 Version 0.3

2.2.5.5. Migration tools for USDL service description

To be updated in release 2.

2.2.6. Supporting Development with MOBiAGENT

For release 1 there are two ways under discussion how to develop a MOBiAGENT app:

1.) “Normal” native android apps that used the REST api’s of the mobiagent (SDK tools: Android

SDK, examples, manuals on how to use the REST API)

2.) OSGI bundles (SDK tools: OSGI SDK, and tools to deploy OSGI bundles on Android based

OSGI.

A decision will be made in early 2014 which will be the preferred way for release 1.

2.2.7. ZIP Archive with complete bundle

To be updated in release 2.

2.3. REST API

REST APIs will be available to access the core functionality of both MOBiCENTRE and MOBiAGENt.

The API is the crucial interface for service developers. Thus, they directly profit from a clear and well-

documented API. In this context, we support the responsible partners with REST API design

recommendations and initial specification proposals.

The following sections describe the proposed high-level design process for the creation of a REST API

with clear recommendations. In addition, we propose the first version of the REST API specification

structure.

2.3.1. Recommendations for RESTful Web Service Design

This section provides recommendations and best practices for RESTful Web Service design. One

specific aim of this section is to guide a proper translation of the identified (RPC-like) service operations

into a well-defined RESTful Web Service API. However, we are not able to cover all relevant aspects in

detail and want to refer to the available introductory books ([Richardson2007]7, [Allamaraju2010]1,

[Webber2010]2).

In context of RESTful Web Services, HTTP is used as an application level protocol. Thus, it is important

to understand the basic semantics of HTTP like its uniform interface, status codes, and caching

1
 Allamaraju2010: Subbu Allamaraju; RESTful Web Services Cookbook; O'Reilly Media; 2010

2
 Webber2010: Jim Webber, Savas Parastatidis, Ian Robinson; REST in Practice: Hypermedia and

 Systems Architecture; O'Reilly Media; 2010

 Service Development Kit (release 1)

 18/12/2013

Page 13 of 22 Version 0.3

characteristics. The above mentioned books cover these aspects as well. For a better understanding, we

want to introduce the uniform interface and its specific characteristics.

Table 2 HTTP Methods and Semantics

HTTP Method Purpose Characteristics

GET Retrieve resource representations. Safe, Idempotent, Cacheable

HEAD Retrieve resource headers. Safe, Idempotent

OPTIONS Lists supported HTTP methods of a resource. Safe, Idempotent

PUT Replace / create3 a resource. Idempotent

DELETE Remove a resource. Idempotent

PATCH
Update the resource state.

-

POST

Primarily used for resource creation. But can

be used for any other operation on the

resource.

Cacheable (limited support /

rarely used, works via HTTP

control headers)

In the following, we briefly describe the specific characteristics:

 Safe:

This property implies that an operation is executed without any side-effect to resource state. E.g.,

searching in the WWW is built upon search indexes which are created via the safe GET method.

However, if GET calls changed resource states, the WWW would lose its search capabilities.

 Idempotent:

This property implies that the operation can be performed one or more times with the same

result. However, it does not imply that state changes are not allowed. It just assumes that every

state change results in the same resource state. E.g., the DELETE operation is idempotent.

When the resource is deleted, the DELETE operation can be safely issued several times without

any additional changes to the state of the server. Thus, the significant benefit is that an operation

can be simply retried if the first attempt seems to have failed.

 Cacheable:

This property implies that representations which are returned by the operation can be used for

future request. This property is the main reason for horizontal scalability of the WWW because

3
 PUT should be used for resource creation if the client knows the full new URI. Otherwise POST

 should be used which creates the new resource below a parent URI.

 Service Development Kit (release 1)

 18/12/2013

Page 14 of 22 Version 0.3

intermediaries are enabled to fulfil a request directly without going through all hops to the origin

server.

Design Methodology

Figure 2 shows the RESTful maturity model, which has been introduced by Leonard Richardson

[QConTalk2008]4. The model shows the evolution from a RPC-oriented Web Service API towards a

RESTful API and introduces the RESTful design principles step-by-step.

Figure 2: RESTful Maturity Model

We briefly explain the different levels and their semantics:

 Level 0:

On this level HTTP is used as a pure transport protocol. Thus, the remote procedure call is

encoded in a specific data format and tunnelled over HTTP. XML-RPC and most SOAP services

fit into this level. But this level does not necessarily imply the usage of XML. In fact, formats like

JSON, YAML or even a custom format could be used. However, the common synopsis is: “Call a

singular endpoint via HTTP POST which responds with a document which contains all required

information”. Such a document will also contain all error messages if something does not work as

expected.

 Level 1:

At this level we break down a large endpoint into individual resources. I.e., we handle complexity

in accordance to the divide and conquer principle. In terms of object-oriented programming, we

introduce a kind of object identity. Rather than calling a plain function, we call a method on a

respective object (i.e., the resource identified via an URI). However, we still use HTTP for

tunnelling requests via POST.

 Level 2:

4
 QConTalk2008: http://www.crummy.com/writing/speaking/2008-QCon/act3.html;

 Access:13.12.2013

 Service Development Kit (release 1)

 18/12/2013

Page 15 of 22 Version 0.3

At this level requests are no longer tunnelled via HTTP. Instead HTTP methods should be used

as close as to their original meaning which enforces a uniform interface and reduces

unnecessary variation. E.g., when retrieving the resource state the safe GET method should be

used. This method has different advantages over POST because of the different operation

characteristics. I.e., the operation does not change the resource state (safe), succeeding

operation calls produce the same results (idempotent), and returned resource states can be

cached (cacheable). The POST method implies none of these properties (despite the cacheable

property in rare cases).

Additionally, further available HTTP semantics should be used like HTTP status codes and HTTP

headers. E.g., when a resource has been permanently moved to another location this status

change is indicated via an HTTP response 301 and the client can easily redirect to the new URI.

 Level 3:

At this level the last REST attribute is taken into account: Hypermedia as the engine of state

(HATEOS). HATEOS implies that returned resource representations contain links to further

resources. Thus, the response indicates the next possible actions and the URIs which need to be

manipulated for that purpose. In this context, it is important to carefully select media types

because they scope the processing semantics and tell the client how to find respective links.

HAETOS introduces a discovery mechanism and makes the resulting API more self-

documenting. Its basic benefits are that the URI scheme may change and new capabilities can

be introduced without breaking existing clients.

It is important to point out that only if a Web Service fulfils all properties up to level three, it can be

considered as “RESTful”.

Thus, in the following we want to concentrate on resource-oriented design. ROA design can be

considered as an “extreme” version of object-oriented design. Basically, you break the system down into

its basic parts – its nouns. Each noun is represented by a class and provides means for interacting with

other nouns – its methods. In a ROA design based on HTTP these methods are restricted by the uniform

HTTP interface (methods and its semantics). Consequently, if you require a more specific method, you

have to introduce a resource instead. E.g., if you want to model a subscription to a news feed, you will

introduce a specific subscription resource which can be created or queried.

Finally, we briefly summaries the resource-oriented design approach as proposed in [Richardson2007]7

 Figure out the data set and split the data set into resources.

The service design starts with an idea of the data set which should be exposed. An important

aspect is to design the data set at the right level of abstraction. Thus, you should follow a

contract-first approach rather than directly exposing existing object models. Then you have to

map the different data objects to resources. Basically, we can distinguish three resource

categories:

o Predefined resources which are used to represent top-level directories or the general

entry point of the service API.

 Service Development Kit (release 1)

 18/12/2013

Page 16 of 22 Version 0.3

o Resources for every data object which is exposed through the service.

o Resources which represent a read-only view on a data set which results from an applied

algorithm (e.g., search algorithm).

Thus, a RESTful Web Services exposes its data and its algorithms as resources. Typically, the

resources are aligned into a hierarchy which starts out small and branches into an infinite number

of leaf resources.

After you have identified your basic resource types, these steps have to be performed for each of

them:

 Name the resources with URIs.

The URI contains all scoping information. For naming you should follow these general guidelines:

o Use path variables to express hierarchy (e.g., “/user/user1/preferences”).

o Use punctuation characters to avoid expressing hierarchy where none exists, e.g.,

“/earth/43.8,17.9” to uniquely express a location by its longitude and latitude.

o Use query parameter to express inputs for algorithms (e.g., “/user?q=age>20”).

URI templates [RFC6570]5 should be used to document the resource URIs in compact character

sequences (e.g., /user/{user-names}).

 Expose a subset of the uniform interface.

In this context, you have to decide which methods of the uniform HTTP interface are applicable

for your resources. E.g., for read-only resources, GET and HEAD need to be supported. For

other interactions, the respective HTTP methods should be used (creation: PUT or POST,

modification: PATCH, removal: DELETE). If you require a more specific method to interact with

the resource, you should introduce a new resource rather than (mis)-using the POST method.

 Design the representations.

In this context, you need to define the corresponding input and output representations for the

supported HTTP methods. The output representations should contain links which establish the

connection with other identified resource types. Thus, they define the next possible application

states. The selected media types establish the interface contract by defining the processing

model of the representation. Particularly, you can also support multiple representations for

different client types. The client can select the required representation by indicating the MIME

type in the “Content-Type” HTTP header. E.g., an AJAX application could select a JSON-based

representation and human user would request a readable plain HTML representation.

However, there is no real standard way to express linking semantics. In the following we provide

some basic guidelines for proper media type selection:

5
 RFC6570: http://tools.ietf.org/html/rfc6570; Access 12.12.2013

 Service Development Kit (release 1)

 18/12/2013

Page 17 of 22 Version 0.3

o Avoid the usage of generic non-hypermedia types like “application/json” or

“application/xml” because they do not understand the semantics of links.

o Avoid usage of URI templates to expose all resource types because this approach leads

to tight coupling with clients.

o Re-use existing hypermedia types ([MediaTypes]6, [Richardson2007]7). E.g., the usage of

the extensible Atom Syndication Format [RFC4287]8 is often encouraged which defines a

XML Schema and the semantics for link relations. Another option is to make use of

XHTML or microformats [Microformats]9 which extend XHTML with domain-specific

semantics (e.g., calendar information, contact information).

o Another popular option is to define vendor-specific MIME types [VendorMIME]10. This

approach allows you to define a hybrid format which describes both data processing and

link semantics. E.g., the MIME type “application/vnd.itinerary+json” could describe an

itinerary-specific client protocol. However, you should only use a vendor-specific MIME

type if no existing fits your needs. Another benefit of this approach is that the MIME type

can encode versioning information. E.g., “application/vnd.itinerary-v2+json” would indicate

the second version of this API. The advantage is that you do not clutter the URI design

with versioning information. The GitHub API [GitHubMIME]11 gives a very good example

of this approach.

Representation design is the most challenging part of the API design. Further information is

presented in [Amundsen2011]12.

 Consider the communication flow.

Typically, when a client requests a resource via GET, the server returns HTTP headers, a

representation, and a return code 200. However, HTTP headers fields ([RFC2616]13, section 14)

and return codes ([RFC2616]8, section 10) offer additional means to tweak the communication.

E.g., conditional GET requests avoid unnecessary representation transfers and save bandwidth.

To implement conditional GET requests, the response header “Last-Modified” and the request

header “If-Modified-Since” can be utilised. I.e., the client can store the provided last modification

timestamp. When the client tries to retrieve the representation again, it can issue the timestamp

with the request header “If-Modified-Since”. Consequently, if no new version of the representation

is available, the server returns a 304 code (“Not Modified”) and will not transfer the

representation.

6
 MediaTypes: http://www.iana.org/assignments/media-types; Access: 13.12.2013

7
 Richardson2007: L. Richardson and S. Ruby; RESTful Web Services; O’Reilly; May 2007; p. xi

8
 RFC4287: http://tools.ietf.org/html/rfc4287; Access: 13.12.2013

9
 Microformats: http://microformats.org/; Access: 13.12.2013

10
 VendorMIME: http://tools.ietf.org/html/rfc4288#section-3.2; Access: 13.12.2013

11
 GitHubMIME: http://developer.github.com/v3/mime/; Access 13.12.2013

12
 Amundsen2011: Mike Amundsen; Building Hypermedia APIs With HTML5 and Node;

 O'Reilly Media; 2011
13

 RFC2616: http://www.ietf.org/rfc/rfc2616.txt; Access: 13.12.2013

http://www.ietf.org/rfc/rfc2616.txt

 Service Development Kit (release 1)

 18/12/2013

Page 18 of 22 Version 0.3

For requests which cannot be fulfilled by the server-side implementation, corresponding return

codes in the 3xx, 4xx, and 5xx range should be used as close as to their original meaning.

Additionally, the response could return a document which describes the specific error conditions.

 Document it.

Finally, you should provide sufficient human-readable documentation. At least you should

describe the following aspects of the service API:

o All resource types with their supported methods.

o Media types which are used for requests and responses.

o The predefined URIs which are not reachable via links.

o Query parameters for algorithmic resource types.

o Specifically used HTTP error codes and headers.

The concrete proposal for the interface specification is shown in the next section.

2.3.2. REST API Specification Template

In the following we show the interface specification for a component that provides N REST interfaces.

Component name

Short description of the component

Interface name (1-N)

Description

Short description of this interface of the component

URL Structure

http://a.b.c.d/component/interface

Method

GET or POST or DELETE, or …

Input Parameters

Name Type Description

 Service Development Kit (release 1)

 18/12/2013

Page 19 of 22 Version 0.3

name Description

name Description

Output

URL encoded string or json string

Name Type Description

Name Description

Name Description

Exception

Any exceptions that can occur, and what the return code and content will be.

Example

To request … from component …., issue the REST request:

Get http://a.b.c.d/component/interface?para=dder4&parb=scft6

This will results in a description of …. ,encoded as json:

{

 asdfasdf : ”sdffft”,

 egvf : [4,5,6],

 tgbh: { a: “b”,

 c: false}

}

2.4. Tutorials

Concrete tutorials will be provided during development and are continuously updated. In the following we

introduce the small example service which we want to use throughout the initial tutorials.

2.4.1. Example Service

http://a.b.c.d/component/interface?para=dder4&parb=scft6

 Service Development Kit (release 1)

 18/12/2013

Page 20 of 22 Version 0.3

The Greetings App for Android is a simple RESTful mobile client to demonstrate user interaction with an

application that uses RESTful web services in background. The following figure shows an overview of

the principle structure of the service. Basically the service provides a method to add new users using

HTTP PUT operation and a method to retrieve user information by using HTTP GET operation. In our

sample we use JSON for exchanging content between client and web service.

 cmp Greetings Serv ice

Greetings Serv ice

GreetingsInterface

GreetingsInterface

Greetings App

GreetingsInterface

«interface»

GreetingsInterface

+ addUser(UserInfo) :void

+ getUser(String) :userInfo: UserInfo

Figure 3: Building block view of the Greetings Service

The App has two separated views. The first view contains a simple input form to enter a user name and

send content to the RESTful web service. The second view shows the result provided by the web

service. In this case it welcomes the user. The screenshots in Figure Figure 4 and Figure 5 show both

views side by side. However, both views can be shown standalone.

Figure 4: Initial start-up view

 Service Development Kit (release 1)

 18/12/2013

Page 21 of 22 Version 0.3

Figure 5: Result view when service is used

 Service Development Kit (release 1)

 18/12/2013

Page 22 of 22 Version 0.3

3. Summary

This deliverable explains the components of the Service Directory KIT and the key targets of each of the

components.

A selection of tools that will be developed for release 1 is given. They consist of Eclipse plug-ins which

are described in detail and with relevant examples and links. The plug-ins will be available as bundle for

both Windows and Unix developer platforms.

To access the core functionality of both MOBiCENTRE and MOBiAGENT REST APIs will be available.

In this document the REST API design recommendations and initial specification proposals are given.

